Indian Statistical Institute, Bangalore

B.Math (Hons.) I Year, Second Semester Semestral Examination Real Analysis II April 29, 2011 In

Time: 3 hours

Instructor: C.R.E.Raja Maximum marks: 50

Section I: Answer all and each question is worth 2 Marks Total Marks 6

- 1. Let a and b be two points in a metric space X such that $a \neq b$. Prove that there is a $\delta > 0$ such that $N_{\delta}(a) \cap N_{\delta}(b) = \emptyset$.
- 2. Prove that compact subset of a metric space is bounded.
- 3. Let $g: \mathbb{R}^n \to \mathbb{R}$ be $g(x) = f(x) \cdot u$ for $x \in \mathbb{R}^n$ where $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable and $u \in \mathbb{R}^m$. Then prove that $g'(x)(h) = f'(x)(h) \cdot u$ for $x, h \in \mathbb{R}^n$.

Section II: Answer any 4 and each question is worth 6 Marks Total Marks 24

- 1. Let *E* be a subset of a metric space *X*. Show that $x \in E'$ if and only if there is a sequence (x_n) in $E \setminus \{x\}$ such that $x_n \to x$.
- 2. If $f:[a,b] \to \mathbb{R}$ is a continuous function, then prove that $f \in \mathcal{R}[a,b]$.
- 3. Assume that $f \in \mathcal{R}[a, b]$, $f \ge 0$ and $\int_a^b f = 0$. Is f = 0? justify your answer. If further f is continuous on [a, b], prove that f = 0.
- 4. Suppose $f \in \mathcal{R}[a, b]$ and ϕ is continuous on \mathbb{R} . Then show that $\phi \odot f \in \mathcal{R}[a, b]$.
- 5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ has partial derivatives $D_1 f$ and $D_2 f$ on \mathbb{R}^2 . If for each $x \in \mathbb{R}^2$, there is a $\eta_x > 0$ such that $D_1 f$ and $D_2 f$ are bounded in $N_{\eta_x}(x)$, then prove that f is continuous on \mathbb{R}^2 .
- 6. (a) Let E be a convex open subset of \mathbb{R}^n and $f: E \to \mathbb{R}^m$ be a differentiable function with bounded derivative. Then prove that there is a M > 0 such that $||f(x) f(y)|| \le M ||x y||$ for all $x, y \in E$.

(b) If E is a connected open subset of \mathbb{R}^n and $f: E \to \mathbb{R}^m$ is a differentiable function with f'(x) = 0 for all $x \in E$, then prove that f is constant on E.

Section III: Answer any 2 and each question is worth 10 Marks Total Marks 20

1. (a) Let (X, d) be a metric space and (a_n) and (b_n) be Cauchy sequences in X. Prove that $\{a_n \mid n \ge 1\}$ is bounded and $(d(a_n, b_n))$ converges in \mathbb{R} .

(b) Let X be a metric space and $x \in X$. Prove that $x \in X'$ if and only if $\overline{X \setminus x} = X$.

- 2. (a) Let f ∈ R[a, b] and ε > 0. Prove that there is a continuous function g on [a, b] such that ∫_a^b |f − g| < ε.
 (b) Let f ∈ R[a, b] and F be a differentiable function on [a, b] such that F' = f. Then prove that ∫_a^b f = F(b) − F(a).
- 3. Let *E* be an open subset of \mathbb{R}^n and $f: E \to \mathbb{R}^m$ be a differentiable function. For $1 \leq i \leq m, f_i: E \to \mathbb{R}$ is such that $f(x) = (f_1(x), \cdots, f_m(x))$ for all $x \in E$.
 - (a) Prove that $D_j f_i$ exists at x and $f'(x)(e_j) = \sum_{i=1}^m D_j f_i(x) u_i$ for $x \in E$.

(b) Let $E = \mathbb{R}$ and f have second order partial derivatives on E. If ||f(t)|| = |t|and ||f'(t)|| = 1 for all $t \in \mathbb{R}$, prove that for $t \in \mathbb{R}$, $f^{(2)}(t) \cdot f(t) = 0$ where $f^{(2)}(t) = (D_{11}f_1(t), \cdots, D_{11}f_m(t))$.